Taming 3-manifolds using scalar curvature

نویسندگان

  • Stanley Chang
  • Shmuel Weinberger
  • Guoliang Yu
چکیده

In this paper we address the issue of uniformly positive scalar curvature on noncompact 3-manifolds. In particular we show that the Whitehead manifold lacks such a metric, and in fact that R3 is the only contractible noncompact 3-manifold with a metric of uniformly positive scalar curvature. We also describe contractible noncompact manifolds of higher dimension exhibiting this curvature phenomenon. Lastlywe characterize all connected oriented 3-manifolds with finitely generated fundamental group allowing such a metric.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

Taming Symplectic Forms and the Calabi-yau Equation

We study the Calabi-Yau equation on symplectic manifolds. We show that Donaldson’s conjecture on estimates for this equation in terms of a taming symplectic form can be reduced to an integral estimate of a scalar potential function. Under a positive curvature condition, we show that the conjecture holds.

متن کامل

Warped product and quasi-Einstein metrics

Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...

متن کامل

Simply Connected Manifolds with Infinitely Many Toric Contact Structures and Constant Scalar Curvature Sasaki Metrics

We study a class of simply connected manifolds in all odd dimensions greater than 3 that exhibit an infinite number of toric contact structures of Reeb type that are inequivalent as contact structures. We compute the cohomology ring of our manifolds by using the join construction for Sasaki manifolds and show that all such contact structures admit a ray of compatible Sasaki metrics of constant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009